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1 Introduction

It is possible to increase the working area of the fixed
based manipulator by combining them with the mobile plat-
forms. Mobile manipulators have many degrees of freedom
to perform manipulation and locomotion tasks such avoid-
ance of obstacles, pushing, picking and placing task in daily
life environments, and hazardous environments.

The mobile manipulators, which have three or more
wheels, are statically stable. Therefore, they do not need
any motion to maintain their balance during standing pose.
However, they should have large bases and footprints to com-
pensate the manipulator motion, keep from falling over and
handle the heavy payloads. Two-wheeled systems are dy-
namically stable and need an active control mechanism to
maintain their balance and pose. These systems have smaller
footprint, and as a results, they are more flexible and ma-
neuverable with respect to mobile manipulators.

This study is focused on one of these systems called two-
wheeled mobile manipulator with an underactuated joint.
This system is modeled as a virtual double inverted pendu-
lum and used with the nonlinear backstepping based control
design to stabilize the passive joint and control the posture
of the manipulator.

2 Modeling

Model of the two-wheeled mobile manipulator is given in
Figure 1. Since two-wheeled mobile manipulator is a com-
plex structure, it is modeled as a virtual double inverted pen-
dulum as shown in Figure 2. In this model, the second, third
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Figure 1: The Two-Wheeled
Mobile Manipulator
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Figure 2: The Virtual Double
Inverted Pendulum Model

and fourth links of the manipulator are considered as the vir-
tual second link of the double inverted pendulum model.

3 Control System

3.1 Control of the Virtual Double Inverted Pendulum

Backstepping, which is a nonlinear recursive design
methodology for tracking and regulation strategies, is uti-
lized to stabilize the motion of the passive joint. To con-
trol the position of the passive joint, first error variable, its

derivative and integral are defined for the first step of the
backstepping method as

z1 = q0 − qcmd
0 (1)

ż1 = q̇0 − q̇0
cmd (2)

ξ =

∫ t

0

(q0 − qcmd
0 )dτ (3)

Lyapunov function candidate for this error variable is se-
lected as

V1(ξ, z1) =
1

2
(λξ2 + z2

1) (4)

If q̇0 were selected as

q̇0 = −λξ − c1z1 + q̇0
cmd (5)

V̇1 becomes negative semi-definite and the error variable z1

becomes stable. Indeed, q̇0 is not an actual control input and
cannot be chosen as (5). Therefore, virtual control input α
is selected as

α = −λξ − c1z1 + q̇0
cmd (6)

Difference between the actual and virtual control input is
defined as a second error variable z2, which is given as

z2 = q̇0 − α (7)

= q̇0 + λξ + c1z1 − q̇0
cmd (8)

The new system can be written as below

ξ̇ = z1 (9)

ż1 = −λξ − c1z1 + z2 (10)

ż2 = q̈0 − c2
1z1 − c1λξ + c1z2 + λz1 − q̈cmd

0 (11)

In order to increase the robustness of the system against un-
known disturbance, parameter variation, and modeling er-
rors, sliding mode is utilized at the final step of the back-
stepping method. Sliding surface is defined as (12), which
actually equals to the second error variable z2.

σ = q̇0 − α (12)

New Lyapunov function is set as

V2(ξ, z1, σ) = V1(ξ, z1) +
1

2
σ2 (13)

Motion equation of the passive joint is obtained from
dynamic equation of the virtual double inverted pendulum
model as

q̈0 = γ − βq̈w − η (14)

where

γ =
g sin(q0)

l0
(15)

β =
R cos(q0)

l0
(16)

η =
m2ld(cos(q0 − qd)q̈d + q̇d sin(q0 − qd))

(m0 + md)l0
(17)



When acceleration input of the wheels q̈w are chosen as

q̈w =
1

β
[γ+c2σ+Ksgn(σ)+(1+λ)z1+c1ż1−q̈cmd

0 −η] (18)

then derivate of the V2 becomes negative semi-definite as
seen from (19), which indicates that V2 is bounded with the
error variables ξ, z1, and σ.

V̇2(ξ, z1, σ) = −c1z
2
1 − c2σ

2 − K|σ| ≤ 0 (19)

By using Barbalat Lemma, it can be shown that error vari-
ables converge to zero as time goes to infinity.

In the wheel control, disturbance observer is used to real-
ize the robust acceleration based backstepping control. The
block diagram of the wheel control is given in Figure 3.
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Figure 3: Block diagram of wheel control

3.2 Control of the Manipulator

The joint space acceleration reference of the redundant
manipulator can be written as (20) by using workspace and
joint space disturbance observer.

q̈ref = J+
wẍref

cog + q̈ref
null (20)

where J+
w is the weighted pseudo inverse matrix and is de-

fined as
J+

w = W −1(JT
wJwW −1JT

w)
−1

(21)

W is a diagonal weighting matrix and selected to decrease
the effect of the passive joint on motion of the manipula-
tor. The acceleration references of the COG motion in the
workspace ẍref

cog and in the null space q̈ref
null are selected as

ẍref
cog = ẍcmd

cog + Kp(xcmd
cog − xcog) (22)

+Kv(ẋcmd
cog − ẋcog)

q̈ref
null = −Knp

∂V (q)

∂q
− Knq̇ (23)

where Kp and Kv are the proportional and differential gains
of the manipulator in the workspace. In (23), first term is
the null space vector for the avoidance of singularity and
second term is the velocity damping vector, used to increase
the stability of null space motion. The block diagram of the
manipulator control is given in Figure 4.

4 Experiment

Several experiments were performed to show the validity
of the proposed method. In the first experiment, joint angle
command of the passive joint is given as zero degree and sine
wave trajectory is selected for the the COG command of the
manipulator. Figure 5(a) shows the position response of the
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Figure 4: Block diagram of manipulator control system

passive joint, and Figure 5(b) shows the position response of
the COG of the manipulator in x direction, respectively.

In the second experiment, sine wave trajectory is selected
for the joint angle command of the passive joint and the
COG command of the manipulator. Joint angle response of
the passive joint, and position response of the COG of the
manipulator in x direction can be seen in Figure 6(a) and
(b), respectively.
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Figure 5: The First Experiment Results
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Figure 6: The Second Experiment Results

5 Conclusions

Ttwo-wheeled mobile manipulator with an underactuated
joint systen is modeled as the virtual double inverted pendu-
lum and nonlinear backstepping is used to achive the stablity
and position control of the passive joint. In the manipulator
control, workspace is used to the COG of the manipulator
and null space is utilized to avoid the singularities. Finally,
the validity of the proposed method was shown by the ex-
perimental results.
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